List of Research and Extension Journals Accepting Papers on Beneficial Nematodes by Ganpati Jagdale

  • Acta Entomologia Bohemoslovaca
  • Acta Horticulturae
  • Acta Parasitologica
  • Acta Phytopathologica et Entomologica Hungarica
  • Acta Phytophylacica Sinica
  • Actes des Colloques Insectes Sociaux
  • Advances in Parasitology
  • Agricultural Ecosystems and Environment
  • Agricultural Systems
  • Agro Food Industry Hi-Technology
  • American Bee Journal
  • American Naturalist
  • Annals of Applied Biology
  • Annals of the Entomological Society of America
  • Annals of the New York Academy of Science
  • Annual Review of Entomology
  • Annual Review of Microbiology
  • Annual Review of Phytopathology
  • Applied Entomology and Zoology
  • Applied and Environmental Microbiology
  • Applied Microbiology and Biotechnology
  • Applied Soil Ecology
  • Arthropod Management Tests
  • Australian Journal of Experimental Agriculture
  • Behaviour
  • Biocontrol Science and Technology
  • Biocontrol
  • Biodiversity and Conservation
  • Biological Control
  • Biology and Fertility of Soils
  • Biotechnology and Bioengineering
  • Biotechnology Progress
  • Brighton Crop Protection Conference- Pest and Disease
  • Bulletin of Entomological Research
  • Bulletin of Entomological Society of America
  • Bulletin of the Faculty of Agriculture, Saga University
  • Bulletin of the Georgian Academy of Sciences
  • Bulletin of the Institute of Maritime Tropical Medicine, Gdynia
  • Bulletin of the Institute of Zoology, Academia Sinica
  • Bulletin of the International Organization for Biological and Integrated Control of Noxious Animals and Plants
  • Bulletin OILB/SROP
  • California Agriculture
  • Canadian Entomologist
  • Canadian Journal of Zoology
  • Cellular and Molecular Life Sciences
  • Chinese Journal of Tropical Crops
  • Comparative Biochemistry and Physiology B
  • Crop Protection
  • Current Genetics
  • Current Opinion in Microbiology
  • Ecology
  • Egyptian Journal of Biological Pest Control
  • Egyptian Journal of Agronematology
  • Entomologia Expermentalis et Applicata
  • Entomophaga
  • Environmental Entomology
  • Experientia
  • Experimental and Applied Acarology
  • Experimental Parasitology
  • FEMS Microbiology Letters
  • Florida Entomologist
  • Folia Parasitologica
  • Forest Ecology and Management
  • Forest Research
  • Gene
  • Indian Journal of Agricultural Sciences
  • Indian Journal of Entomology
  • Indian Journal of Nematology
  • Insect Science and Its Application
  • Israel Journal of Medical Science
  • Integrated Pest Management Reviews
  • International Journal for Parasitology
  • International Journal of Nematology
  • International Journal of Parasitology
  • International Journal of Systematic Bacteriology
  • International Journal of Systematic and evolutionary Microbiology
  • International Organization for Biological and Integrated Control Bulletin
  • International Research Communications System Medical Science: Microbiology, Parasitology and Infectious Diseases
  • IOBC/WPRS Bulletin
  • Irish Journal of Agricultural and Food Research
  • Japanese Journal of Applied Entomology and Zoology
  • Japanese Journal of Nematology
  • Journal for Hawaiian and Pacific Agriculture
  • Journal of Agricultural Research
  • Journal of American Mosquito Control Association
  • Journal of Animal Ecology
  • Journal of Applied Ecology
  • Journal of Applied Entomology- Zeitschrift fur Angewandte Entomologie
  • Journal of Arboriculture
  • Journal of Australian Entomological Society
  • Journal of Bacteriology
  • Journal of Economic Entomology
  • Journal of Egyptian Society of Parasitology
  • Journal of Entomological Science
  • Journal of Environmental Horticulture
  • Journal of chemical Ecology
  • Journal of Clinical Microbiology
  • Journal of General Microbiolgy
  • Journal of Helminthology
  • Journal of Industrial Microbiology and Biotechnology
  • Journal of Insect Pathology
  • Journal of Invertebrate Pathology
  • Journal of Kansas Entomological Society
  • Journal of Medical Entomology
  • Journal of Molluscan Studies
  • Journal of Natural Products
  • Journal of Nematology
  • Journal of Parasitology
  • Journal of Genetic Microbiology
  • Journal of the Australian Entomological Society
  • Journal of the Entomological Society of British Columbia
  • Journal of the Georgia Entomological Society
  • Journal of Thermal Biology
  • Journal of West China University of Medical Sciences
  • Korean Journal of Applied Entomology
  • Korean Journal of Turfgrass Science
  • Medical and Veterinary Entomology
  • Memoirs of the Entomological Society of Canada
  • Microbial Ecology
  • Molecular Phylogenetics and Evolution
  • Mosquito News
  • Mushroom News
  • Natural Enemies of Insects
  • Nature
  • Nature Biotechnology
  • Nematology
  • Nematropica
  • Netherlands Journal of Plant Pathology
  • New Zealand Entomologist
  • New Zealand Journal of Experimental Agriculture
  • New Zealand Journal of Zoology
  • Oecologia
  • Pakistan Journal of Nematology
  • Parasitology
  • Parasitology Research
  • Pedobiologica
  • Pest Management Science
  • Phytoparasitica
  • Phytoprotection
  • Plant Protection Quarterly
  • Polskie Pismo Entomologiczne
  • Proceedings of the American Chemical Society, Division of Environmental Chemistry
  • Proceedings of the Florida State Horticultural Society
  • Proceedings of the Entomological Society of Washington
  • Proceedings of the Helminthological Society of Washington
  • Proceedings of the North Central Branch of Entomological Society of America
  • Research and Reviews in Parasitology
  • Revista de la Sociedad Entomologica Argentina
  • Revista de Proteccion Vegetal
  • Revue de Nematologie
  • Russian Journal of Nematology
  • Science
  • Sri Lanka Journal of Tea Science
  • SPOR/WPRS Bulletin
  • Systematic and Applied Microbiolgy
  • Systematic Parasitology
  • The Canadian Entomologist
  • Trends in Parasitology
  • Veterinary Dermatology
  • Zhonghua Kunchong

Visit this blog again for new updates (if any) on research & extension journals related to insect and slug parasitic nematodes

Symbiotic bacteria of Heterorhabdits nematodes- Photorhabdus species by Ganpati Jagdale

  1. Heterorhabditis amazonensis- undescribed
  2. H. argentinensis- P. temperata
  3. H. bacteriophora- Photorhabdus luminescens subsp. laumondii TT01, P. luminescens kayaii subsp. nov., P. luminescens thracensis subsp. nov., P. temperate
  4. H. baujardi- undescribed
  5. H. brevicaudis- P. luminescens
  6. H. downesi- Photorhabdus sp
  7. H. floridensis- undescribed
  8. H. georgiana- undescribed
  9. H. hambletoni- undescribed
  10. H. hawaiiensis- P. luminescens
  11. H. heliothidis- undescribed
  12. H. hepialius- P. luminescens
  13. H. hoptha- undescribed
  14. H. indica- P. luminescens
  15. H. marelata- P. luminescens
  16. H. megidis- P. temperata subsp. temperata XlNach
  17. H. mexicana- undescribed
  18. H. poinari- Photorhabdus sp
  19. H. safricana- undescribed
  20. H. taysearae- undescribed
  21. H. zealandica- P. temperata

Visit this blog again for new updates (if any) on Heterorhabditis species and their associated bacterial species

Symbiotic bacteria of Steinernematid nematodes- Xenorhabdus species by Ganpati Jagdale

  1. Steinernema abbasi- undescribed
  2. S. aciari- undescribed
  3. S. affine-Xenorhabdus bovienii
  4. S. akhursti- undescribed
  5. S. anatoliense- undescribed
  6. S. apuliae- undescribed
  7. S. arenarium- X. kozodoii
  8. S. ashiuense- undescribed
  9. S. asiaticum- undescribed
  10. S. australe- X. magdalenensis
  11. S. backanense- undescribed
  12. S. beddingi- undescribed
  13. S. bicornutum- X. budapestensis
  14. S. carpocapsae- X. nematophila
  15. S. caudatum- undescribed
  16. S. ceratophorum- undescribed
  17. S. cholashanense- undescribed
  18. S. cubanum- X. poinarii
  19. S. cumgarense- undescribed
  20. S. diaprepesi- undescribed
  21. S. eapokense- undescribed
  22. S. feltiae- X. bovienii
  23. S. glaseri- X. poinarii
  24. S. guangdongense- undescribed
  25. S. hebeiense- undescribed
  26. S. hermaphroditum- undescribed
  27. S. intermedium - X. bovienii
  28. S. jollieti-undescribed
  29. S. karii- undescribed
  30. S. khoisanae- undescribed
  31. S. kraussei- X. bovienii
  32. S. kushidai- X. japonica
  33. S. leizhouense- undescribed
  34. S. litorale- undescribed
  35. S. loci- undescribed
  36. S. longicaudum- undescribed
  37. S. monticolum- undescribed
  38. S. neocurtillae- undescribed
  39. S. oregonense- undescribed
  40. S. pakistanense- undescribed
  41. S. puertoricense- X. romanii
  42. S. rarum- X. szentirmaii
  43. S. riobrave- Xenorhabdus sp
  44. S. ritteri- Xenorhabdus sp
  45. S. robustispiculum- undescribed
  46. S. sangi- undescribed
  47. S. sasonense- undescribed
  48. S. scapterisci- X. innexi
  49. S. scarabaei- X. koppenhoeferi
  50. S. serratum- X. ehlersii
  51. S. siamkayai- X. stockiae
  52. S. sichuanense- X. bovienii
  53. S. silvaticum- undescribed
  54. S. tami- Xenorhabdus sp
  55. S. texanum- undescribed
  56. S. thanhi- undescribed
  57. S. thermophilum- X. indica
  58. S. websteri- undescribed
  59. S. weiseri- undescribed
  60. S. yirgalemense- undescribed

Visit this blog again for new updates (if any) on Steinernema species and their associated bacterial species

Beneficial Nematodes: Steinernema and Heterorhabditis species by Ganpati Jagdale

Entomopathogenic nematodes in the genera Steinernema and Heterorhabditis are recognized as insect-parasitic nematodes, beneficial nematodes, biocontrol agents, biological control agents, biological insecticides or biopesticides. These nematodes are also recognized as pathogens or microbial control agents because of their symbiotic association with bacteria (Xenorhabdus and Photorhabdus spp.) that are mainly pathogenic to insects. Because of mutualistic relationship with pathogenic bacteria these nematodes are named as entomopathogenic nematodes.

These beneficial nematodes contribute to the regulation of natural populations of insects.  However, the population of naturally occurring entomopathogenic nematodes is normally not high enough to manages soil dwelling plant pests. Therefore, during last 3-4 decades, these live nematodes have been commercially mass produced and inundatively applied to control many garden insects, turfgrass insects, nursery insects, greenhouse insects and insects that feed on different field crops.

Use of this natural control of insects is beneficial for both the environment and humans because it reduces use of chemical insecticides/pesticides.

These biopesticides (entomopathogenic nematodes and their symbiotic bacteria) are safe to produce and not harmful to users, application personnel, mammals, most beneficial insects or plants.

Since entomopathogenic nematodes do not cause any health risk to the consumers of nematode treated agricultural produce and damage to the environment, they are exempted from registration requirements in most countries.

These biological control agents have also no detrimental effect on other benefical nematodes including bacterial feeders, some fungal feeders (Aphelenchus sp.), predatory nematodes and other soil microbial communities.

But entomopathogenic nematodes can be detrimental to plant-parasitic nematodes that are responsible for causing a tremendous economic loss to our agriculture industry throughout world. It has been demonstrated that entomopathogenic nematodes can suppress the populations of many economically important plant-parasitic nematodes including foliar nematodes, potato cyst nematodes, ring nematodes, root-knot nematodes,  root lesion nematodes, sting nematodes, stubby root nematodes and stunt nematodes.

Scientific publications on Entomopathogenic Nematodes by Ganpati Jagdale

Scientific Publications by Dr. Ganpati B. Jagdale on insect-parasitic nematodes (EPNs) I. Book Chapters

Tomalak, M., Piggott, S. and Jagdale, G. B. 2005. Glasshouse applications. In: Nematodes As Biocontrol Agents. Grewal, P.S. Ehlers, R.-U., Shapiro-Ilan, D. (eds.). CAB publishing, CAB International, Oxon. Pp 147-166.

II. Research Publications

  1. Jagdale, G.B., Kamoun, S., Grewal, P.S. 2009. Entomopathogenic nematodes induce components of systemic resistance in plants: Biochemical and molecular evidence. Biol. Control.51: 102-109
  2. Hoy, C. W., Grewal, P. S., Lawrence, J. L., Jagdale, G., Acosta, N. 2008. Canonical correspondence analysis demonstrates unique soil conditions for entomopathogenic nematode species compared with other free-living nematode species. Biol. Control. 46: 371-379.
  3. Jagdale, G. B. and Grewal, P. S. 2008. Influence of the entomopathogenic nematode Steinernema carpocapsae infected host cadavers or their extracts on the foliar nematode Aphelenchoides fragariae on Hosta in the greenhouse and laboratory. Biological Control 44: 13-23.
  4. Shabeg, S .B., Jagdale, G. B., Cheng, Z, Hoy, C. W., Miller, S. A. and. Grewal, P. S. 2007. Indicative value of soil nematode food web indices and trophic group abundance in differentiating habitats with a gradient of anthropogenic impact. Environmental Bioindicators 2: 146-160. Jagdale, G. B., Casey, M. L., Grewal, P. S. and Luis Cañas. 2007. Effect of entomopathogenic nematode species, split application and potting medium on the control of the fungus gnat, Bradysia difformis (Diptera : Sciaridae), in the greenhouse at alternating cold and warm temperatures. Biological Control 43: 23-30. Jagdale, G. B. and Grewal, P. S. 2007. Storage temperature influences desiccation and ultra violet radiation tolerance of entomopathogenic nematodes. Journal of Thermal Biology 32: 20-27. Jagdale, G. B., Saeb, A. T., Nethi Somasekhar and Grewal, P. S. 2006. Genetic variation and relationships between isolates and species of the entomopathogenic nematode genus Heterorhabditis deciphered through isozyme profiles. Journal of Parasitology 92: 509- 516. Sandhu, S. K., Jagdale, G. B., Hogenhout, S. A. and Grewal, P. S. 2006. Comparative analysis of the expressed genome of the entomopathogenic nematode, Heterorhabditis bacteriophora. Molecular and Biochemical Parasitology 145: 239-244. Grewal, P. S., Susan Bornstein-Forst, S., Burnell, A. M., Glazer, I. and Jagdale, G. B. 2006. Physiological, genetic, and molecular mechanisms of chemoreception, thermobiosis and anhydrobiosis in entomopathogenic nematodes. Biological Control 38: 54- 65. Jagdale, G. B., Grewal, P. S. and Salminen, S. O. 2005. Both heat-shock and cold-shock influence trehalose metabolism in entomopathogenic nematodes. Journal of Parasitol 91: 988-994. Jagdale, G. B., Casey, M. L., Grewal, P. S. and Lindquist, R. K. 2004. Application rate and timing, potting medium and host plant on the efficacy of Steinernema feltiae against the fungus gnat, Bradysia coprophila, in floriculture. Biological Control 29: 296-305. Jagdale, G. B., and Grewal, P. S. 2003. Acclimation of entomopathogenic nematodes to novel temperatures: trehalose accumulation and the acquisition of thermotolerance. International Journal for Parasitology 33: 145-152. Grewal, P. S. and Jagdale, G. B. 2002. Enhanced trehalose accumulation and desiccation survival of entomopathogenic nematodes through cold preacclimation. Biocontrol Science and Technology 12: 533- 545. Jagdale, G. B. and Gordon, R. 1998. Effect of propagation temperatures on temperature tolerances of entomopathogenic nematodes. Fundamental and Applied Nematology 21: 177-183. Jagdale, G. B. and Gordon, R. 1998. Variable expression of isozymes in entomopathogenic nematodes follows laboratory recycling. Fundamental and Applied Nematology 21: 147-155. Jagdale, G. B. and Gordon, R.1997. Effect of temperature on the activities of glucose-6-phosphate dehydrogenase and hexokinase in entomopathogenic nematodes (Nematoda: Steinernematidae). Comparative Biochemistry and Physiology 118A: 1151-1156. Jagdale, G. B. Gordon, R. 1997. Effect of temperature on the composition of fatty acids in total lipids and phospholipids of entomopathogenic nematodes. Journal of Thermal Biology 22: 245-251. Jagdale, G. B. and Gordon, R. 1997. Effect of recycling temperature on the infectivity of entomopathogenic nematodes. Canadian Journal of Zoology 75: 2137-2141. Jagdale, G. B., Gordon, R. and Vrain, T. C. 1996. Use of cellulose acetate electrophoresis in the taxonomy of steinernematids (Rhabditida, Nematoda). Journal of Nematology 28: 301-309. Jagdale, G. B. and Gordon, R. 1994. Distribution of catecholamines in the nervous system of a mermithid nematode, Romanomermis culicivorax. Parasitology Research 80: 459-466. Jagdale, G. B. and Gordon, R. 1994. Distribution of FMRF-amide-like peptide in the nervous system of a mermithid nematode, Romanomermis culicivorax. Parasitology Research 80: 467-473. Jagdale, G.B. and Gordon, R. 1994. Role of catecholamines in the reproduction of Romanomermis culicivorax. Journal of Nematology 26: 40-45. Jagdale, G.B. and Gordon, R. 1994. Caudal papillae in Romanomermis culicivorax. Journal of Nematology 26: 235-237.

Symbiotic bacterial genus, Photorhabdus by Ganpati Jagdale

known species of symbiotic bacterial genus Photorhabdus associated with a nematode genus Heterorhabditis. Identification based on colony morphology and molecular techniques

  1. Photorhabdus luminescens (Thomas and Poinar 1979) Boemare et al. 1993
  2. P. temperata
  3. P. luminescens subsp. luminescens subsp. nov., Fischer-Le Saux, Viallard, Brunel, Normand & Boemare, 1999
  4. P. luminescens subsp. akhurstii subsp. nov., Fischer-Le Saux, Viallard, Brunel, Normand & Boemare, 1999
  5. P. luminescens subsp. kayaii subsp. nov., Hazir, Stackebrandt, Lang, Schumann, Ehlers & Keskin, 2004
  6. P. luminescens subsp. laumondii subsp. nov., Fischer-Le Saux, Viallard, Brunel, Normand & Boemare, 1999
  7. P.luminescens subsp. sonorensis, Orozco, Hill & Stock, 2013
  8. P. temperata sp. nov., Fischer-Le Saux, Viallard, Brunel, Normand & Boemare, 1999
  9. P. temperata subsp. temperata subsp. nov., Fischer-Le Saux, Viallard, Brunel, Normand & Boemare, 1999
  10. P. luminescens subsp. thracensis subsp. nov., Hazir, Stackebrandt, Lang, Schumann, Ehlers & Keskin, 2004

Visit this blog again for new updates (if any) on Photorhabdus species

Symbiotic bacterial genus, Xenorhabdus Thomas and Poinar 1979 by Ganpati Jagdale

known species of symbiotic bacterial genus Xenorhabdus Thomas and Poinar 1979 associated with a nematode genus Steinernema. Identification based on colony morphology and molecular techniques

  1. Xenorhabdus beddingii (Akhurst 1986) Akhurst and Boemare 1993
  2. X. bovienii (Akhurst 1983) Akhurst and Boemare 1993
  3. X. budapestensis Lengyel, Lang, Fodor, Szállás, Schumann, Stackebrandt, 2005
  4. X. cabanillasii Tailliez, Pagès, Ginibre & Boemare, 2006
  5. X. doucetiae Tailliez, Pagès, Ginibre & Boemare, 2006
  6. X. ehlersii Lengyel, Lang, Fodor, Szállás, Schumann, Stackebrandt, 2005
  7. X. griffiniae Tailliez, Pagès, Ginibre & Boemare, 2006
  8. X. hominickii Tailliez, Pagès, Ginibre & Boemare, 2006
  9. X. indica Somvanshi, Lang, Ganguly, Swiderski, Saxena, & Stackebrandt 2006
  10. X. innexi Lengyel, Lang, Fodor, Szállás, Schumann, Stackebrandt, 2005
  11. X. japonica Nishimura et al. 1995
  12. X. koppenhoeferi Tailliez, Pagès, Ginibre & Boemare, 2006
  13. X. kozodoii Tailliez, Pagès, Ginibre & Boemare, 2006
  14. X. magdalenensis, Tailliez, Pages, Edgington, Tymo, & Buddie, 2012
  15. X. mauleonii Tailliez, Pagès, Ginibre & Boemare, 2006
  16. X. miraniensis Tailliez, Pagès, Ginibre & Boemare, 2006
  17. X. nematophila (Poinar and Thomas 1965) Thomas and Poinar 1979
  18. X. poinarii (Akhurst 1983) Akhurst and Boemare 1993
  19. X. romanii Tailliez, Pagès, Ginibre & Boemare, 2006
  20. X. stockiae Tailliez, Pagès, Ginibre & Boemare, 2006
  21. X. szentirmaii Lengyel, Lang, Fodor, Szállás, Schumann, Stackebrandt, 2005

Visit this blog again for new updates (if any) on Xenorhabdus species

Life cycle of entomopathogenic nematodes (EPNs) by Ganpati Jagdale

 

Entomopathogenic nematode life cycle

  • EPNs complete most of their life cycle in insects with an exception of infective juveniles, the only free-living stage found in soil.
  • Infective juveniles of both Steinernema and Heterorhabditis locate a host and enter through its natural body openings such as mouth, anus or spiracles.
  • Infective juveniles of Heterorhabditis also enter through the intersegmental members of the host cuticle.
  • Infective juveniles then actively penetrate through the midgut wall or tracheae into the insect body cavity (hemocoel) containing insect blood (haemolymph).
  • Once in the body cavity, infective juvenile releases symbiotic bacteria from its intestine in the insect haemolymph.
  • Bacteria start multiplying in the nutrient-rich haemolymph and infective juveniles recover from their arrested state (dauer stage) and start feeding on multiplying bacteria and disintegrated host tissues.
  • Toxins produced by the developing nematodes and multiplying bacteria in the body cavity kill the insect host usually within 48 hours.
  • These bacteria also produce a plethora of metabolites, toxins and antibiotics with bactericidal, fungicidal and nematicidal properties, which ensures monoxenic conditions for nematode development and reproduction in insect cadaver.
  • Heterorhabditid and Steinernematid nematodes differ in their mode of reproduction. For example, in heterorhabditid nematodes, the first generation individuals are produced by self-fertile hermaphrodites (hermaphroditic) but subsequent generation individuals are produced by cross fertilization involving males and females (amphimictic). In Steinernematid nematodes with an exception of one species, all generations are produced by cross fertilization involving males and females (amphimictic).
  • Depending on availability of food resource, both heterorhabditid and steinernematid nematodes generally complete 2-3 generations within insect cadaver and emerge as infective juveniles to seek new hosts.
  • Generally, life cycle of entomopathogenic nematodes (from infective juvenile penetration to infective juvenile emergence) is completed within 12- 15 days at room temperature. The optimum temperature for growth and reproduction of nematodes is between 25 and 300C.

Species of the genus Heterorhabditis Poinar, 1976 by Ganpati Jagdale

Known species of Heterorhabditis Poinar, 1976 with a biocontrol potential- Identification based on morphological and molecular techniques

  1. Heterorhabditis amazonensis Andalo, Nguyen, & Moino, 2006
  2. H. argentinensis Stock, 1993
  3. H. atacamensis, Edgington, Buddie, Moore, France, Merino, & Hunt, 2011
  4. H. bacteriophora Poinar, 1976
  5. H. baujardi Phan, Subbotin, Nguyen & Moens, 2003
  6. H. brevicaudis Liu, 1994
  7. H. downesi Stock, Griffin & Burnell, 2002
  8. H. floridensis Nguyen, Gozel, Koppenhofer, & Adams, 2006
  9. H. georgiana Nguyen, Shapiro-Ilan, & Mbata, 2008
  10. Heterorhabditis gerrardi, Plichta, Joyce, Clarke, Waterfield, & Stock, 2009
  11. H. hambletoni (Pereira, 1937) Poinar, 1976
  12. H. hawaiiensis Gardner, Stock & Kaya, 1994
  13. H. heliothidis (Khan, Brooks & Hirschman, 1976) Poinar, Thomas & Hess, 1977
  14. H. hepialius Stock, Strong & Gardner, 1996
  15. H. hoptha (Turco, 1970), Poinar, 1979
  16. H. indica Poinar, Karunakar & David, 1992
  17. H. marelata Liu & Berry, 1996
  18. H. megidis Poinar, Jackson & Klein, 1988
  19. H. mexicana Nguyen, Shapiro-Ilan, Stuart, MCCoy, James & Adams, 2004
  20. H. poinari Kakulia & Mikaia, 1997
  21. H. safricana Malan, Nguyen, deWaal, & Tiedt, 2008
  22. Heterorhabditis sonorensis, Stock, Rivera-Orduno, & Flores-Lara, 2009
  23. H. taysearae Shamseldean, El-Sooud, Abd-Elgawad & Saleh, 1996
  24. H. zealandica Poinar, 1990

Visit this blog again for new updates (if any) on Heterorhabdtis species

Species of the genus Steinernema Travassos, 1927 by Ganpati Jagdale

Known species of Steinernema Travassos, 1927 with a biocontrol potential- Identification was based on morphological and molecular techniques

  1. Steinernema abbasi Elawad, Ahma & Reid, 1997
  2. S. aciari Qiu, Yan, Zhou, Nguyen & Pang, 2004
  3. S. affine (Bovien, 1937) Wouts, Mrácek, Gerdin & Bedding, 1982
  4. S. akhursti Qiu, Hu, Zhou, Mei, Nguyen, & Pang, 2005
  5. S. anatoliense Hazir, Stock & Keskin, 2003
  6. S. apuliae Triggiani, Mracek & Reid, 2004
  7. S. arenarium (Artyukhovsky, 1967) Wouts, Mrácek, Gerdin & Bedding, 1982
  8. S. ashiuense Phan, Takemoto & Futai, 2006
  9. S. asiaticum Shahina, Reid & Rowe, 2002
  10. S. australe, Edgington, Buddie, Tymo, Hunt, Nguyen, France, Merino, & Moore, 2009
  11. S. backanense Phan, Spiridonov, Subbotin & Moens, 2006
  12. S. balochiense Fayyaz, Khanum, Ali, Solangi, Gulsher & Javed, 2015
  13. S. beddingi Qiu, Hu, Zhou, Pang & Nguyen, 2005
  14. S. bicornutum Tallosi, Peters & Ehlers 1995
  15. S. brazilense, Nguyen, Ginarte, Leite, dos Santos, & Harakava, 2010
  16. S. carpocapsae (Weiser, 1955) Wouts, Mrácek, Gerdin & Bedding, 1982
  17. S. caudatum Xu, Wang & Li, 1991
  18. S. ceratophorum Jian, Reid & Hunt 1997
  19. S. cholashanense Nguyen, Puža & Mrácek, 2008
  20. S. citrae Stokwe, Malan, Nguyen, Knoetze, & Tiedt, 2011
  21. S. costaricense Uribe, Mora & Stock, 2007
  22. S. cubanum Mrá¡cek, Hernandez & Boemare, 1994
  23. S. cumgarense Phan, Spiridonov, Subbotin & Moens, 2006
  24. S. dharanaii , Kulkarni, Rizvi, Kumar, Paunikar& Mishra, 2012
  25. S. diaprepesi Nguyen, & Duncan, 2002
  26. S. eapokense Phan, Spiridonov, Subbotin & Moens, 2006
  27.  S. fabii Abate, Malan, Tiedt, Wingfield, Slippers, Hurley, 2016. 
  28. S. feltiae (Filipjev, 1934) Wouts, Mrácek, Gerdin & Bedding, 1982
  29. S. glaseri (Steiner, 1929) Wouts, Mracek, Gerdin & Bedding, 1982
  30. S. guangdongense Qiu, Fang, Zhou, Pang, & Nguyen, 2004
  31. S. hebeiense Chen, Li, Yan, Spiridonov & Moens, 2006
  32. S. hermaphroditum Stock, Griffin, & Chaerani, 2004
  33. S.  innovation Cimen, Lee, Hatting, Hazir, Stock 2015
  34. S. intermedium (Poinar, 1985) Mamiya, 1988
  35. S. jeffreyense Malan, Knoetze & Tiedt, 2016
  36. S. jollieti Spiridonov, Krasomil-Osterfeld & Moens, 2004
  37. S. karii Waturu, Hunt & Reid, 1997
  38. S. khoisanae Nguyen, Malan, & Gozel, 2006
  39. S. kraussei (Steiner, 1923) Travassos, 1927
  40. S. kushidai Mamiya, 1988
  41. S. leizhouense Nguyen, Qiu, Zhou, & Pang, 2006
  42. S. litorale Yoshida, 2004
  43. S. loci Phan, Nguyen & Moens, 2001
  44. S. longicaudum Shen & Wang, 1992
  45. S. monticolum Stock, Choo & Kaya, 1997
  46. S. neocurtillae Nguyen & Smart, 1992
  47. S. oregonense Liu & Berry, 1996
  48. S. pakistanense Shahina, Anis, Reid, Rowe & Maqbool, 2001
  49. S. papillatum  San-Blas, Portillo, Nermut, Puza, & Morales-Montero 2015
  50. S. phyllophagae Nguyen and Buss, 2011
  51. S. puertoricense Roman & Figueroa, 1994
  52. S. puntauvense Uribe, Mora & Stock, 2007
  53. S. rarum (Doucet, 1986) Mamiya, 1988
  54. S. riobrave Cabanillas, Poinar & Raulston, 1994
  55. S. ritteri de Doucet & Doucet, 1992
  56. S. robustispiculum Phan, Subbotin, Waeyenberge, & Moens, 2005
  57. S. sangi Phan, Nguyen & Moens, 2001
  58. S. sasonense Phan, Spiridonov, Subbotin & Moens, 2006
  59. S. scapterisci Nguyen & Smart, 1992
  60. S. scarabaei Stock & Koppenhöfer 2003
  61. S. serratum Liu, 1992
  62. S. siamkayai Stock, Somsook & Kaya, 1998
  63. S. sichuanense Mrácek, Nguyen, Tailliez, Boemare & Chen, 2006
  64. S. silvaticum Sturhan, Spiridonov & Mracek, 2005
  65. S. tami Luc, Nguyen, Reid & Spiridonov, 2000
  66. S. texanum Nguyen, Stuart, Andalo, Gozel, & Roger, 2007
  67. S. thanhi Phan, Nguyen & Moens, 2001
  68. S. thermophilum Ganguly & Singh, 2000
  69. S. websteri Cutler & Stock, 2003
  70. S. weiseri Mrácek, Sturhan & Reid, 2003
  71. S. xinbinense Ma, Chen, De Clercq, Waeyenberge, Han & Moens, 2012
  72. S. xueshanense, Mracek, Liu, & Nguyen, 2009
  73. S. yirgalemense Nguyen, Tesfamariam, Gozel, Gaugler, & Adams, 2005

Visit this blog again for new updates (if any) on Steinernema species

Entomopathogenic Nematode Facts by Ganpati Jagdale

Entomopathogenic nematodes (EPNs) of the two genera Steinernema Travassos, 1927 and Heterorhabditis Poinar, 1976 in the order Rhabdita kill most insects but they are harmless to some beneficial insects (e.g. honey bees), higher animals and environment. Third-stage juvenile is the only free-living stage in the life cycle of the nematode known as the infective juvenile or dauer juvenile that found in soil and can seek, infect and kill their insect hosts.

These infective juveniles are mutualistically associated with symbiotic bacteria (Xenorhabdus spp. or Photorhabdus spp.) in the family Enterobacteriaceae, which are capable of causing disease in insect pests and killing them.

Species of genus, Xenorhabdus are specifically assocaited with the members of the nematode genusSteinernema and Photorhabdus species are associated with the members of nematode genusHeterorhabditis.

In this mutualistic relationship, the nematode infective juveniles provides protection for bacterium outside the insect host (as bacterium is unable to survive in the outside environment i.e. soil or water) and a means of transmission to new hosts and in return bacteria provides nutrients required for the nematode development and reproduction.

Infective juveniles are adapted to remain in the soil environment without feeding until they find a suitable host.

They are also resistant to unfavorable environmental conditions such as desiccation, heat and freezing.

EPNs can infect soil dwelling stages of butterflies, moths, beetles, flies, crickets and grasshoppers.

Infective juveniles of different nematode species employ different foraging strategy to find and infect their insect hosts. For example, Heterorhabditis bacteriophora is a cruiser forager meaning that it actively finds out or hunts its prey, Steinernema carpocapsae is an ambusher forager that sits and wait for a pray to pass by and S. feltiae and S. rivobrave are intermediate foragers.

EPNs are now commercially produced using both in vivo (in living host) and in vitro (in artificial medium) techniques.

Since EPNs have a wide host range, they are currently used as potential biological control agents to manage insect pests of many field crops, greenhouse and nursery plants, horticultural crops, turfgrass, and in some instances insect pests of animals and humans.

EPNs also have a potential to use as biocontrol agents against plant-parasitic nematodes.

Commercially produced nematode infective juveniles can be stored for extended periods and easily applied in aqueous suspensions in the field using traditional sprayers.

Also, EPNs are compatible with several chemical fungicides, insecticides, nematicides and herbicides, and therefore, they can be easily included in IPM programs.

Under current pesticide regulations, the U.S. Environmental Protection Agency has exempted these biological control agents from registration.

Insect parasitic nematodes are our friends by Ganpati Jagdale

Nematodes are defined as thread-like microscopic, colorless, unsegmented round worms found in almost all habitats especially in soil and water. Nematodes may be free-living, predacious and parasitic. Nematodes that are considered our friends include entomopathogenic nematodes, insect-parasitic nematodes, slug-parasitic and free-living nematodes.

Read More