A report of a new entomopathogenic nematode species, Heterorhabditis gerrardi from Australia by Ganpati Jagdale

Recently, a new entomopathogenic nematode species Heterorhabditis gerrardi has been reported from Australia.  This nematode and its associated bacteria, Photorhabdus asymbiotica Kingscliff strain was identified using both morphological and molecular techniques. Please read following paper on procedures used for identification of this new entomopathogenic nematode species.

Plichta, K.L., Joyce, S.A., Clarke, D., Waterfield, N. and Stock, S.P. 2009.  Heterorhabditis gerrardi n. sp (Nematoda: Heterorhabditidae): the hidden host of Photorhabdus asymbiotica (Enterobacteriaceae: gamma-Proteobacteria). Journal of Helminthology.83: 309-320.

A new species of an entomopathogenic nematode, Heterorhabditis brevicaudis from Taiwan by Ganpati Jagdale

A new species of Heterorhabditis brevicaudis and its symbiotic bacteria, Photorhabdus luminescens subsp. akhurstii has been reported for the first time from Taiwan.  This nematode was isolated from sandy coastal soils in moist bamboo forest. Read following paper for more information on the methods used for identification of nematodes and its associated bacteria.

Hsieh, F.C., Tzeng, C.Y., Tseng, J.T., Tsai, Y.S., Meng, M.H. and Kao, S.S. 2009.  Isolation and Characterization of the Native Entomopathogenic Nematode, Heterorhabditis brevicaudis, and its Symbiotic Bacteria from Taiwan.  Current Microbiology. 58: 564-570.

Control of the black vine weevil Otiorhynchus sulcatus infesting strawberry fields by Ganpati Jagdale

It has been reported that entompathogenic nematodes including Heterorhabditis megidis and Steinernema kraussei are effective against the black vine weevil Otiorhynchus sulcatus infesting strawberry fields (Haukeland and Lola-Luz, 2010).  It has been suggested that the soil type and soil temperature plays a significant role in efficacy of these nematodes against the black vine weevil.  It is also noted that H. megidis performs better at soil temperatures above 10oC and S. kraussei at below 10oC. References:

Haukeland, S. and Lola-Luz, T. 2010.  Efficacy of the entomopathogenic nematodes Steinernema kraussei and Heterorhabditis megidis against the black vine weevil Otiorhynchus sulcatus in open field-grown strawberry plants. Agricultural and Forest Entomology.12363-369

Control of the western corn rootworm with Heterorhabditis bacteriophora by Ganpati Jagdale

It has been demonstrated that that application of an entomopathogenic nematode Heterorhabditis bacteriophora can reduce the population of the western corn rootworm Diabrotica virgifera virgifera in the field and thus reducing the damage caused by this insect pest to corn roots and preventing subsequent lodging of plants (Stefan et al., 2010). References:

Stefan, T., Ibolya, H.Z., Ehlers, R.U., Peters, A. and Kuhlmann, U. 2010.  The effect of application techniques on field-scale efficacy: can the use of entomopathogenic nematodes reduce damage by western corn rootworm larvae? Agricultural and Forest Entomology. 12: 389-402.

Entomopathogenic nematodes can protect citrus fruits from the damage caused by the mediterranean fruit fly by Ganpati Jagdale

The data presented by Abd-Elgawad et al., at the 49th Annual meeting of the Society of Nematlogists held from July 11-14, 2010 in Boise, Idaho clearly demonstrated that the application of two species of entomopathogenic nematodes (Steinernema riobrave and Heterorhabditis bacteriophora) in the soil significantly reduced the emergence of adults Mediterranean fruit fly, Ceratitis capitata when  compared with the untreated control.

Research papers presented on entomopathogenic nematodes at 49th annual meeting of the Society of Nematologists by Ganpati Jagdale

Recently, 49th annual meeting of the Society of Nematologists was held from July 11- 14, 2010 in Boise, Idaho.  This meeting was a great success and was attended by over 200 participants from all over the world. A total of 5 symposiums entitled "Potato Nematology (Convener: David Chitwood), Expanding Frontiers of Nematology (Conveners: Parwinder Grewal and Charles Opperman), Education (Convener: TJ Bliss), Nematode-Microbe Interactions (Conveners: Amy Treonis and Parwinder Grewal) and Frontiers in Insect Nematology (Conveners: David I Shapiro-Ilan and Ganpati Jagdale)" were organised in this meeting. Also, two workshops namely "Molecular Ecology (Conveners: Raquel Campos-Herrera and Byron J. Adams) and Industry (Conveners: Tom Hewlett) were organised to cover topics regarding molecular basis for the nematode- environment interactions and various technologies in nematode research, respectively. There were 7 contributed paper sessions covering various nematode research topics including host-parasite interactions (Convener: Russ Ingham), management 1 (Convener: Maurice Moens) & 2 (Convener: Shabeg Briar), registance and genetics (Convener: Richard Davis), biological control (Convener: Kris Lambert), ecology/evolution/behavior (Convener: George Bird) and variou topics (Convener: Robin Giblin-Davis). Following is the list of papers presented on entomopathogenic nematodes at the meeting

Following papers were presented in the symposium on entomopathogenic nematodes (Frontiers in Insect Nematology).

Abd-Elgawad, Mahfouz M. M., A.S. Abdel-Razek, and A.E. Abd El-Wahab. 2010. Protection of citrus fruits against the medfly using entomopathogenic nematodes and fungi.

Bal, Harit K., R. A. J. Taylor, and P.S. Grewal. 2010. Do ambusher and cruiser entomopathogenic nematodes disperse differently in soil in the absence of hosts?

Campos-Herrera, Raquel, E. Pathak, R.J., Stuart, F.E. El-Borai, C. Gutiérrez, J.H. Graham, and L.W. Duncan. 2010.  Entomopathogenic nematode ecology as a basis for their use in pest management.

Dolinski, Claudia 2010.  Recent advancements in applied entomopathogenic Nematology in South America.

Grewal, Parwinder S., and R. An. 2010.  Partnership between entomopathogenic nematodes and bacteria.

Holmes, Len D. and F.L. Inman III. 2010.  Learning to raise the entomopathogenic nematode Heterorhabditis bacteriophora in submerged culture.

Moens, Maurice and R.-U. Ehlers. 2010.   The latest developments in applied entomopathogenic nematology in Europe.

Pathak, Ekta, R. Campos-Herrera, R.J. Stuart, F.E. El-Borai, A.W. Schumann, J.H. Graham, and L.W. Duncan. 2010.  The impact of a new tactic to manage a citrus disease on biological control of a citrus pest by entomopathogenic nematodes.

Shapiro-Ilan, David I., and Lawrence A. Lacey. 2010.  Novel entomopathogenic nematode formulations and targets in north american orchards.

Entomopathogenic nematodes and insect parasitoids can work together to kill insect pests by Ganpati Jagdale

In a laboratory study, recently it has been demonstrated that the combined application of an entomopathogenic nematode,  Heterorhabditis indica and an insect parasitoid, Habrobracon hebetor can enhance the mortality of Indianmeal moth, Plodia interpunctella.

Please read following literature for more information on compatibility of entomopathogenic nematodes and insect parasitoides

Mbata, G.N. and Shapiro-Ilan, D.I. 2010 Compatibility of Heterorhabditis indica (Rhabditida: Heterorhabditidae) and Habrobracon hebetor (Hymenoptera: Braconidae) for biological control of Plodia interpunctella (Lepidoptera: Pyralidae). Biological Control. 54: 75-82.

Management of small hive beetles with insect-parasitic nematodes by Ganpati Jagdale

Entomopathogenic nematodes including Steinernema riobrave and Heterorhabditis indica were evalusted against a small hive beetle Aethina tumida Murray (Coleoptera: Nitidulidae) in the field. According to Ellis et al. (2010) both nematode species caused over 76% mortality of hive beetles. Shapiro-Ilan et al. (2010) tested efficacy of H. indica and Steinernema carpocapsae against hive beetles and demonstrated that both nematode species when applied through infected host cadavers can cause up to 78% control in hive beetles. This suggests that entomopathogenic nematodes have a potential to use as biological control agents against hive beetles.

Read following papers for detail information on effect of entomopathogenic nematodes on the small hive beetles.

Ellis, J.D., Spiewok, S., Delaplane, K.S., Buchholz, S., Neumann, P. and Tedders, W.L. 2010.  Susceptibility of Aethina tumida (Coleoptera: Nitidulidae) larvae and pupae to entomopathogenic nematodes. Journal of Economic Entomology. 103: 1-9.

Shapiro-Ilan, D.I., Morales-Ramos, J.A., Rojas, M.G. and Tedders, W.L. 2010.  Effects of a novel entomopathogenic nematode-infected host formulation on cadaver integrity, nematode yield, and suppression of Diaprepes abbreviatus and Aethina tumida. Journal of Invertebrate Pathology. 103: 103-108.

Mode of action of entomopathogenic nematodes by Ganpati Jagdale

When the infective juveniles of entomopathogenic nematodes are applied to the soil surface in the fields or thatch layer on golf courses, they start searching for their insect hosts. Once insect larva has been located, the nematode infective juveniles penetrate into the larval body cavity via natural openings such as mouth, anus and spiracles. Infective juveniles of Heterorhabditis nematodes can also enter through the intersegmental membranes of the grub cuticle. Once in the body cavity, infective juveniles release symbiotic bacteria (Xenorhabdus spp. for Steinernematidae and Photorhabdus spp. for Heterorhabditidae) from their gut in insect blood. In the blood, multiplying nematode-bacterium complex causes septicemia and kill their insect host usually within 48 h after infection. Nematodes feed on multiplying bacteria, mature into adults, reproduce and then emerge as infective juveniles from the host cadaver to seek new larvae in the soil.

Control of annual bluegrass weevil, Listronotus maculicollis with entomopathogenic nematodes by Ganpati Jagdale

It has been reported that the entomopathogenic nematodes including Steinernema carpocapsae, S. feltiae and Heterorhabditis bacteriophora when applied at rate of 2.5 billion infective juveniles/ha can cause 69- 94% mortality of first generation late instars of annual bluegrass weevil, Listronotus maculicollis. Of the 3 species of entomopathogenic nematodes, S. feltiae showed higher virulence against annual bluegrass weevil than the other two nematode species (see McGraw et al., 2010).

Read following research papers for more information on interaction between entomopathogenic nematodes and annual bluegrass weevil, L. maculicollis.

McGraw, B.A., Vittumb, P.J. Cowlesc, R.S.and Koppenhoumlfera, A.M. 2010.  Field evaluation of entomopathogenic nematodes for the biological control of the annual bluegrass weevil, Listronotus maculicollis (Coleoptera: Curculionidae), in golf course turfgrass. Journal Biocontrol Science and Technology. 20: 149 - 163.

Entomopathogenic nematodes can be used for controlling pests of stored grains by Ganpati Jagdale

It has been demonstrated that the efficacy of entomopathogenic nematodes (Heterorhabditis bacteriophora, Steinernema carpocapsae, and Steinernema feltiae against various stored grain pests (Mediterranean flour moth, Ephestia kuehniella, lesser grain borer, Rhyzopertha dominica, rice weevil, Sitophilus oryzae and confused flour beetle, Tribolium confusum) of wheat (Triticum aestivum L.) varied with nematode dosages and temperature in the storage structures. Please read following papers for detailed information on the interaction between entomopathogenic nematodes and stored grain pests.

Athanassiou, C.G., Kavallieratos, N.C., Menti, H. and Karanastasi, E. 2010.  Mortality of four stored product pests in stored wheat when exposed to doses of three entomopathogenic nematodes.  Journal of Economic Entomology. 103: 977-984.

Athanassiou, C.G., Palyvos, N.E. and Kakoull-Duarte, T. 2008.  Insecticidal effect of Steinernema feltiae (Filipjev) (Nematoda : Steinernematidae) against Tribolium confusum du Val (Coleoptera : Tenebrionidae) and Ephestia kuehniella (Zeller) (Lepidoptera: Pyralidae) in stored wheat  Journal of Stored Products Research. 44: 52-57.

Mbata, G.N., and Shapiro-Ilan, D.I. 2005.  Laboratory evaluation of virulence of heterorhabditid nematodes to Plodia interpunctella Hübner (Lepidoptera: Pyralidae). Environmental Entomology. 34: 676 – 682.

Ramos-Rodríguez, O., Campbell, J. F. and Ramaswamy, S. 2006.  Pathogenicity of three species of entomopathogenic nematodes to some major stored- product insect pest. Journal of Stored Product Research 42: 241 – 252.

Ramos-Rodríguez,O., Campbell, J. F. and Ramaswamy, S. 2007.  Efficacy of the   entomopathogenic nematodes Steinernema riborave against the stored-product pests Tribolium castaneum and Plodia interpunctella. Biological Control 40:15 -21.

Tradan, S., Vidric, M. and Valic, N. 2006.  Activity of four entomopathogenic nematodes against young adult of Sitophilus granarious (Coleptera: Curculionidae ) and Oryzophilus surinamensis ( Coleoptera: Silvanidae ) under laboratory condition. Plant Disease and Protection. 113: 168 – 173.

Control Rhipicephalus (Boophilus) microplus with an entomopathogenic nematode Steinernema glaseri by Ganpati Jagdale

It has been demonstrated that the entomopathogenic nematode Steinernema glaseri CCA strain can infect engorged Rhipicephalus ( Boophilus) microplus female ticks within two hours of exposure.  However, nematodes can cause over 90% mortality of ticks when they are in contact with the ticks for 24 hours. Read following papers for more information on interaction between entomopathogenic nematodes and ticks.

de Carvalho, L.B., Furlong, J., Prata, M.C.D., dos Reis, E.S., Batista, E.S.D., Faza, A.P. and Leite R.C. 2010.  Evaluation in vitro of the infection times of engorged females of Rhipicephalus (Boophilus) microplus by the entomopathogenic nematode Steinernema glaseri CCA strain. Ciencia Rural. 40: 939-943.

Freitas-Ribeiro G.M., Furlong, J., Vasconcelos, V.O., Dolinski, C. and Loures-Ribeiro, A. 2005.  Analysis of biological parameters of Boophilus microplus Canestrini, 1887 exposed to entomopathogenic nematodes Steinernema carpocapsae Santa Rosa and all strains (Steinernema : Rhabditida). Brazilian Archives of Biology and Technology. 48: 911-919.

Kocan, K.M., Pidherney, M.S., Blouin, E.F., Claypool, P.L., Samish, M. and Glazer, I. 1998.  Interaction of entomopathogenic nematodes (Steinernematidae) with selected species of ixodid ticks (Acari : Ixodidae). Journal of Medical Entomology. 35: 514-520.

Monteiro, C.M.D., Prata, M.C.D., Furlong, J., Faza, A.P., Mendes, A.S., Andalo, V. and Moino, A.2010.  Heterorhabditis amazonensis (Rhabditidae: Heterorhabditidae), strain RSC-5, for biological control of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitology Research. 106: 821-826.

Reis-Menini, C.M.R., Prata, M.C.A., Furlong, J. and Silva, E.R. 2008.  Compatibility between the entomopathogenic nematode Steinernema glaseri (Rhabditida : Steinernematidae) and an acaricide in the control of Rhipicephalus (Boophilus) microplus (Acari : Ixodidae). Parasitology Research. 103: 1391-1396.

Do you know that the queens of red imported fire ants can be susceptible to entomopathogenic nematodes? by Ganpati Jagdale

As we know that the red imported fire ants (Solenopsis invicta Buren) are most notorious and difficult to control.  These ants are considered as a major agricultural and urban pest and they can be medically and environmentally harmful.  Red imported fire ants generally invade home lawns, school yards, athletic fields, golf courses and parks.  Natural enemies including microsporidian protozoan (Thelohania solenopsae) the fungus (Beauveria bassiana),  South African parasitoid flies (Pseudacteon tricuspis and Pseudacteon curvatus) and entomopathogenic nematodes have a potential to use as a biological control agents to kill red imported fire ants. Recently, it has been reported that the infective juveniles of two entomopathogenic nematode species including Steinernema carpocapsae All and S. scapterisci can infect the queens of the red imported fire ant, Solenopsis invicta under laboratory conditions.  Both nematodes can cause up to  100% mortality of fire ant queens 9 days after their exposure. 

For correct dosages of nematodes and their efficacy, please read the paper listed below.

Zhang, L.K., Zhang, P.B., Cao, L. and Han, R.C. 2010.  Susceptibility of red imported fire ant queens to the entomopathogenic nematodes Steinernema carpocapsae All and S. scapterisci. Sociobiology. 55: 519-526.

Biological control of filbertworm, Cydia latiferreana with entomopathogenic nematodes by Ganpati Jagdale

Filbertworm, Cydia latiferreana is considered as an economically important insect pest of hazelnuts, Corylus avellana in North America.  Three entomopathogenic nematode species including Heterorhabditis marelatus Pt. Reyes strain, Steinernema carpocapsae All strain and Steinernema kraussei L137 strain have been tested as biological control agents against filbertworm under both laboratory and field condition (Chambers et al., 2010; Bruck and Walton, 2007). These studies showed that these nematodes can cause about 73–100% mortality of filbertworms (Bruck and Walton, 2007) and can be used to manage overwintering worms on the hazelnut orchard floor (Chambers et al., 2010).

Read following literature for information on the interaction between entomopathogenic nematodes and filbertworm.

Bruck, D.J. and Walton, V.M. 2007.  Susceptibility of the filbertworm (Cydia latiferreana, Lepidoptera:Tortricidae) and filbert weevil (Curculio occidentalis, Coleoptera: Curculionidae) to entomopathogenic nematodes. Journal of Invertebrate Pathology. 96: 93–96.

Chambers, U. Bruck, D.J., Olsen, J. and Walton, V.M. 2010.  Control of overwintering filbertworm (Lepidoptera: Tortricidae) larvae with Steinernema carpocapsae. Journal of Economic Entomology. 103: 416-422.

Biological control of the red palm weevil, Rhynchophorus ferrugineus with entomopathogenic nematodes by Ganpati Jagdale

The red palm weevil, Rhynchophorus ferrugineus is considered as a major pest of palms in the Mediterranean Basin. Because of cryptic habitats of these weevils, their management with chemical insecticides is difficult.  It has been demonstrated that the entomopathogenic nematodes have a potential to use as biological control agents against red palm weevils.  For example, Steinernema carpocapsae can cause over 80% mortality of weevils under field conditions when applied in a chitosan formulation (Dembilio et al., 2010, Llacer et al., 2009).

Read following literature for more information

Abbas, M.S.T., Saleh, M.M.E. and Akil, A.M. 2001.  Laboratory and field evaluation of the pathogenicity of entomopathogenic nematodes to the red palm weevil, Rhynchophorus ferrugineus (Oliv.) (Col.: Curculionidae). Anzeiger Fur Schadlingskunde-Journal of Pest Science. 74: 167-168.

Dembilio, O., Llacer, E., de Altube, M.D.M. and Jacas, J.A. 2010.  Field efficacy of imidacloprid and Steinernema carpocapsae in a chitosan formulation against the red palm weevil Rhynchophorus ferrugineus (Coleoptera: Curculionidae) in Phoenix canariensis. Pest Management Science. 66: 365-370.

Llacer, E., de Altube, M.M.M. and Jacas, J.A. 2009.  Evaluation of the efficacy of Steinernema carpocapsae in a chitosan formulation against the red palm weevil, Rhynchophorus ferrugineus, in Phoenix canariensis. Biocontrol. 54: 559-565.

Monzer, A.E, and El-Rahman, R.A. 2003.  Effect on Heterorhabditis indica of substances occurring in decomposing palm tissues infested by Rhynchophorus ferrugineus. Nematology. 5: 647-652.

Salama, H.S., Abd-Elgawad, M. 2001.  Isolation of heterorhabditid nematodes from palm tree planted areas and their implications in the red palm weevil control. Anzeiger Fur Schadlingskunde-Journal of Pest Science. 74: 43-45.

Salama, H.S. and Abd-Elgawad, M. 2002.  Activity of heterorhabditid nematodes at high temperature and in combination with cytoplasmic polyhedrosis virus. Anzeiger Fur Schadlingskunde-Journal of Pest Science. 75: 78-80.

A first report of occurrence of entomopathogenic nematodes in Nepal by Ganpati Jagdale

Recently a survey was conducted to study the occurrence and distribution of entomopathogenic nematodes in Nepal.  Although a total of 276 soil samples were collected from various habitats, entomopathogenic nematode were found only in 29 samples.  Nematodes were isolates using the Galleria-baiting technique (Bedding and Akhurst,1975). Both heterorhabditid and steinernematid nematodes were identified at their species level using both molecular and morphological techniques.  In this survey, the occurrence of only one species of heterorhabditids including Heterorhabditis indica and four described species of steinernematids such as Steinernema abbasi, S. cholashanense, S. feltiae and S. siamkayai were reported for the first time in Nepal (Khatri-Chhetri et al., 2010). Read following literature for more information

Bedding, R.A. and R.J. Akhurst. 1975. A simple technique for detection of insect parasitic rhabditid nematodes in soil. Nematologica. 21: 109-110.

Khatri-Chhetri, H.B., Waeyenberge, L., Manandhar, H.K. and Moens, M. 2010.  Natural occurrence and distribution of entomopathogenic nematodes (Steinernematidae and Heterorhabditidae) in Nepal. Journal of Invertebrate Pathology. 103: 74-78.

Kill cereal leaf beetles, Oulema melanopus with entomopathogenic nematodes by Ganpati Jagdale

Recently, it has been demonstrated that the entomopathogenic nematodes including Steinernema feltiae strain B30, S. carpocapsae strain C101, and Heterorhabditis bacteriophora strain D54 have a potential to use as biological control agents against cereal leaf beetles (Oulema melanopus), which is a most common pest of many cereal crops including barley, corn, oats, wheat, rye, millet and rice.

For more information on interaction between entomopathogenic nematodes and cereal leaf beetles read following research paper.

Laznik, Z., Toth, I., Lakatos, T., Vidrih, M. and Trdan, S. 2010.  Oulema melanopus (L.) (Coleoptera: Chrysomelidae) adults are susceptible to entomopathogenic nematodes (Rhabditida) attack: results from a laboratory study. Journal of Plant Diseases and Protection. 117: 30-32.

Entomopathogenic nematodes can be applied through infected insect host cadavers by Ganpati Jagdale

Entomopathogenic nematodes are generally applied as infective juveniles in aqueous suspensions using various techniques including irrigation systems, sprayers and water cans. These nematodes can also be applied through infected host cadavers. It has been demonstrated that the application of nematode infected insect cadavers can provide superior nematode dispersal (Shapiro and Glazer, 1996), infectivity (Shapiro and Lewis, 1999) and survival (Perez et al., 2003) when compared with the nematodes that applied in aqueous suspensions. Please read following literature to learn more about the advantages and disadvantages of applying nematodes through infected insect cadavers.

Creighton, C.S. and Fassuliotis, G. 1985.  Heterorhabditis sp. (Nematoda: Heterorhabditidae): a nematode parasite isolated from the banded cucumber beetle Diabrotica balteata. Journal of Nematology. 17: 150–153.

Del Valle, E.E., Dolinksi, C., Barreto, E.L.S. and Souza, R.M. 2009.  Effect of cadaver coatings on emergence and infectivity of the entomopathogenic nematode Heterorhabditis baujardi LPP7 (Rhabditida: Heterorhabditidae) and the removal of cadavers by ants. Biological Control 50: 21–24.

Del Valle, E.E., Dolinksi, C., Barreto, E.L.S., Souza, R.M. and Samuels, R.I. 2008.  Efficacy of Heterorhabditis baujardi LP77 (Nematoda: Rhabditida) applied in Galleria mellonella (Lepidoptera: Pyralidae) insect cadavers to Conotrachelus psidii (Coleoptera: Curculionidae) larvae. Biocontrol Science and Technology. 18: 33–41.

Perez, E.E., Lewis, E.E and Shapiro-Ilan, D.I. 2003.  Impact of host cadaver on survival and infectivity of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) under desiccating conditions. Journal of Invertebrate Pathology. 82: 111–118.

Shapiro, D.I and Lewis, E.E. 1999.  Comparison of entomopathogenic nematode infectivity from infected hosts versus aqueous suspension. Environmental Entomology. 28: 907–911.

Shapiro, D.I. and Glazer, I. 1996.  Comparison of entomopathogenic nematode dispersal from infected hosts versus aqueous suspension. Environmental Entomology. 25: 1455–1461.

Shapiro-Ilan, D.I., Lewis, E.E., Behle, R.W and McGuire, M.R. 2001.  Formulation of entomopathogenic nematode-infected-cadavers. Journal of Invertebrate Pathology 78: 17–23.

Shapiro-Ilan, D.I., Lewis, E.E., Tedders, W.L. and Son, Y. 2003.  Superior efficacy observed in entomopathogenic nematodes applied in infected-host cadavers compared with application in aqueous suspension, Journal of Invertebrate Pathology 83: 270–272.

Shapiro-Ilan, D.I., Tedders, W.L. and Lewis, E.E., 2008. Application of entomopathogenic nematode-infected cadavers from hard-bodied arthropods for insect suppression. US Patent 7374,773.

Biological control of the cattle tick Rhipicephalus microplus with entomopathogenic nematodes by Ganpati Jagdale

Recently, it has been demonstrated that the entomopathogenic nematode, Heterorhabditis amazonensis strain RSC-5 have a potential to use as a biological control agent against cattle tickRhipicephalus (Boophilus) microplus (Monteiro et al., 2010), which is considered to be the most important tick parasite of livestock in the world.  This hardy tick can be found on many hosts including cattle, buffalo, horses, donkeys, goats, sheep, deer, pigs, dogs and some wild animals. This tick can also transmit babesiosis (cattle fever), which is caused by the protozoal parasites,  Babesia bigemina and Babesia bovis.  Also, transmit  anaplasmosis caused by Anaplasma marginale. Read following literature for more information on interaction between entomopathogenic nematodes and animal parasitic ticks

Freitas-Ribeiro G.M., Furlong, J., Vasconcelos, V.O., Dolinski, C. and Loures-Ribeiro, A. 2005.  Analysis of biological parameters of Boophilus microplus Canestrini, 1887 exposed to entomopathogenic nematodes Steinernema carpocapsae Santa Rosa and all strains (Steinernema : Rhabditida). Brazilian Archives of Biology and Technology. 48: 911-919.

Kocan, K.M., Pidherney, M.S., Blouin, E.F., Claypool, P.L., Samish, M. and Glazer, I. 1998.  Interaction of entomopathogenic nematodes (Steinernematidae) with selected species of ixodid ticks (Acari : Ixodidae). Journal of Medical Entomology. 35: 514-520.

Monteiro, C.M.D., Prata, M.C.D., Furlong, J., Faza, A.P., Mendes, A.S., Andalo, V. and Moino, A.2010.  Heterorhabditis amazonensis (Rhabditidae: Heterorhabditidae), strain RSC-5, for biological control of the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Parasitology Research. 106: 821-826.

Reis-Menini, C.M.R., Prata, M.C.A., Furlong, J. and Silva, E.R. 2008.  Compatibility between the entomopathogenic nematode Steinernema glaseri (Rhabditida : Steinernematidae) and an acaricide in the control of Rhipicephalus (Boophilus) microplus (Acari : Ixodidae). Parasitology Research. 103: 1391-1396.

How do entomopathogenic nematodes kill their insect hosts? by Ganpati Jagdale

When the infective juveniles of entomopathogenic nematodes are applied to the soil surface in the fields or thatch layer on glf courses, they start searching for their insect hosts. Once insect larva has been located, the nematode infective juveniles penetrate into the larval body cavity via natural openings such as mouth, anus and spiracles. Infective juveniles of Heterorhabditis nematodes can also enter through the intersegmental membranes of the grub cuticle. Once in the body cavity, infective juveniles release symbiotic bacteria (Xenorhabdus spp. for Steinernematidae and Photorhabdus spp. for Heterorhabditidae) from their gut in insect blood. In the blood, multiplying nematode-bacterium complex causes septicemia and kill their insect host usually within 48 h after infection. Nematodes feed on multiplying bacteria, mature into adults, reproduce and then emerge as infective juveniles from the host cadaver to seek new larvae in the soil.