Seven Beneficial Entomopathogenic Nematodes for Chive Gnat Control by Ganpati Jagdale

Seven beneficial entomopathogenic nematodes including Heterorhabditis bacteriophoraH. indicaH. megidisSteinernema ceratophorumS. feltiaeS. hebeiense and S. litorale have been tested against Chive gnat, Bradysia odoriphaga. This insect pest is one of the most damaging pests of Chinese chive, Allium tuberosum. 

Read More

Two biological agents for the control of strawberry root weevils by Ganpati Jagdale

Strawberry root weevils [Otiorhynchus ovatus] are one of the most important insect pests of strawberry crop.  Adults of strawberry root weevil feed on the edges of strawberry leaves [leaf notching] but this damage is not considered as economically important like the damage caused by their larval stages to strawberry roots [root pruning].

Read More

Seven reasons to use beneficial nematodes as safer alternatives to pesticides by Ganpati Jagdale

Why beneficial nematodes are safer alternatives to pesticides- Nematodeinformation

To control insect pests in your organic garden, beneficial entomopathogenic nematodes are safer alternatives to chemical insecticides because.......

  1. Beneficial nematodes and their symbiotic bacterium have no detrimental effects on animals and plants.
  2. Both nematodes and their symbiotic bacteria do not cause any harm to the personnel involved in their production and application.
  3. Entomopathogenic nematode treated agriculture products are safe to handle and eat.
  4. Entomopathogenic nematodes and symbiotic bacteria do not have any pathogenic effects on humans or animals.
  5. When applied in the soil, entomopathogenic nematodes have also no negative effect on beneficial nematodes (bacteriovore, fungivore, omnivore and predatory) and other microbial communities.
  6. Entomopathogenic nematodes are also not harmful to the economically important beneficial insects such as honeybees.
  7. Finally, entomopathogenic nematodes are non-polluting and thus environmentally safe.

Storage temperature can influence beneficial nematode activity by Ganpati Jagdale

Several different species of white grubs including Anomala orientalis, Ataenius spretulus, Blitopertha orientalis, Cotinus nitida, Cyclocephala borealis, Cyclocephala pasadenae, Cyclocephala hirta, Exomala orientalis, Hoplia philanthus, Maladera castanea, Melolontha melolontha, Phyllophaga Spp. and Rhizotrogus majalis are major pests of turf grass.

Read More

Three beneficial natural enemies for crane fly Tipula paludosa control by Ganpati Jagdale

Crane flies Tipula paludosa are one of important pests of turfgrass. Only larval stages (Fig. 1) of crane fly cause damage to turfgrass.  Crane fly adults are harmless to plants (Fig. 2). Crane fly larvae mainly feed on turfgrass roots and crowns but some time they can also feed on the turfgrass foliage.  The main symptom of crane fly damage that you will notice is the bare patches of dead turf in your lawn or golf courses.

Read More

Entomopathogenic nematodes can even infect and kill citrus mealybugs by Ganpati Jagdale

Citrus mealybug Planococcus citri is a serious insect pest of many greenhouse plants as well as fruit crops in the field. There are different biological, chemical and cultural approaches available for the management of citrus mealybugs.

Read More

Beneficial nematodes for control of termite Reticulitermes flavipes by Ganpati Jagdale

Eastern Subterranean Termite, Reticulitermes flavipes are the most destructive and economically important pest of wood industry.  Current research shows that the entomopathogenic nematodes also called beneficial nematodes have a potential to use as environmentally safe biological control agents against termites.

Read More

Biological control of Fuller rose beetle with beneficial nematodes by Ganpati Jagdale

Fuller rose beetle, Asynonychus godmani- Nematode Information

Fuller rose beetle, Asynonychus godmani is one of the most economically important pests of roses and citrus.  A laboratory study conducted by Morse and Lindegren (1996) showed that an entomopathogenic nematode Steinernema carpocapsae caused a maximum 67 and 83% mortality of three week old larvae and adults of the Fuller rose beetle, Asynonychus godmani with 500 and 150 nematode infective juveniles, respectively. Subsequent field study also showed that the application of nematodes significantly reduced the emergence of adult fuller rose beetles in the second year after nematode application. This suggests that the applied entomopathogenic nematodes were recycled and persisted in the field for two years.

Influence of entomopathogenic nematodes on reproduction of Rhipicephalus microplus by Ganpati Jagdale

Tick, Rhipicephalus microplus is one of most import insect pests of live stocks including cattle, buffalo, horses, donkeys, goats, sheep, deer, pigs and dogs. This tick is known for transmitting cattle fever, which is caused by the protozoal parasites including Babesia bigemina and Babesia bovis.

Read More

A new subspecies of Photorhabdus luminescens by Ganpati Jagdale

Symbiotic bacteria, Photorhabdus luminescens subsp. sonorensis, Orozco, Hill & Stock, 2013

Based on phenotypic characteristics and sequences of the 16S rDNA, the symbiotic bacteria extracted from an entomopathogenic nematode, Heterorhabditis sonorensis has been identified as Photorhabdus luminescens subsp. sonorensis, Orozco, Hill & Stock, 2013 (Orozco et al., 2013).

Literature:

Orozco, R.A., Hill, T. and Stock, S.P. 2013.  Characterization and phylogenetic relationships of Photorhabdus luminescens subsp. sonorensis (gamma-Proteobacteria: Enterobacteriaceae), the bacterial symbiont of the entomopathogenic nematode Heterorhabditis sonorensis (Nematoda: Heterorhabditidae). Current Microbiology 66: 30-39.

Stock, S.P., Rivera-Orduno, B. and Flores-Lara, Y. 2009. Heterorhabditis sonorensis n. sp (Nematoda: Heterorhabditidae), a natural pathogen of the seasonal cicada Diceroprocta ornea (Walker) (Homoptera: Cicadidae) in the Sonoran desert. Journal of Invertebrate Pathology 100: 175-184.

A new entomopathogenic Stienernematid nematode from Ethiopia by Ganpati Jagdale

 Steinernema ethiopiense- Nematodeinformation

Using Galleria mellonella baiting technique (Bedding and Akhurst, 1975), an entomopthogenic nematode isolated from Ethiopia was identified as Stienernematid nematode. Based on both morphological and molecular characteristics, this entomopathogenic nematodes was considered as a new species and named as Steinernema ethiopiense (Tamiru et al., 2012).

For detail information on its morphological and molecular characteristics of this new species and its comparisons with other known species of Steinernematid nematodes read following literature.

Literature:

Bedding, R.A. and R.J. Akhurst. 1975. A simple technique for detection of insect parasitic rhabditid nematodes in soil. Nematologica. 21: 109-110.

Tamiru, T., Waeyenberge, L., Hailu, T., Ehlers, R.-U., Půža, V., Mráček, Z. 2012.  Steinernema ethiopiense sp. n. (Rhabditida: Steinernematidae), a new entomopathogenic nematode from Ethiopia. Nematology 14: 741- 757.

A new entomopathogenic Stienernematid nematode from China by Ganpati Jagdale

Steinernema xinbinense- Nematodeinformation

Using Galleria mellonella baiting technique (Bedding and Akhurst, 1975), a new species of entomopthogenic nematode collected from Liaoning province of North China was identified as Stienernematid nematode and based on both morphological and molecular characteristics it was named as Steinernema xinbinense (Ma et al., 2012).

For detail information on the morphological and molecular characteristics of this new species read following literature.

Literature:

Bedding, R.A. and R.J. Akhurst. 1975. A simple technique for detection of insect parasitic rhabditid nematodes in soil. Nematologica. 21: 109-110.

Ma, J., Chen, S., De Clercq, P., Waeyenberge, L., Han, R. and Moens, M. 2012. A new entomopathogenic nematode, Steinernema xinbinense n. sp. (Nematoda: Steinernematidae), from north China. Nematology 14: 723-739

A new entomopathogenic heterorhabditid nematode from South Africa by Ganpati Jagdale

Heterorhabditis noenieputensis

Based on both morphological and molecular characteristics, a new species of entomopthogenic nematode collected from a Citrus orchard was identified as Heterorhabditid nematode and named as Heterorhabditis noenieputensis. For detail information on its morphological and molecular characteristics and their comparisons with other closely related species of heterorhabditid nematodes read following literature.

Literature:

Malan, A.P., Knoetze, R. and Tiedt, L. 2012. Heterorhabditis noenieputensis n. sp. (Rhabditida: Heterorhabditidae), a new entomopathogenic nematode from South Africa. Journal of Helminthology 12:1-13.

A new entomopathogenic Heterorhabdtid nematode from China by Ganpati Jagdale

Heterorhabditid Nematode: Heterorhabditis beicherriana

Based on both morphological and molecular characteristics an entomopathogenic nematode isolated from an orchard located near Beijing, China was considered as a new species Heterorhabditid nematode and named as Heterorhabditis beicherriana (Li et al., 2012). For more information on molecular technique read following literature.

Literature:

Li, X.Y., Liu, Q.Z., Nermut, J., Puza, V. and Mracek, Z. 2012. Heterorhabditis beicherriana n. sp (Nematoda: Heterorhabditidae), a new entomopathogenic nematode from the Shunyi district of Beijing, China. Zootaxa  Issue: 3569: 25-40.  

Discovery of parasitic wasps of Sawyer beetles, Monochamus species by Ganpati Jagdale

Parasitic wasps and Sawyer beetles, Monochamus species Pine wilt disease is caused by the pinewood nematode (Bursaphelenchus xylophilus), which is primarily vectored by Sawyer beetles, Monochamus spp. 

Read More

Biological control of cabbage pests with Rhabditis blumi nematode by Ganpati Jagdale

Caterpillars of some insect pests including Imported cabbage worm (Artogeia rapae; Fig. 1), Diamondback moth (Pluetella xylostella) and Cabbage moth (Mamestra brassicae) cause a tremendous damage to many cruciferous plants including cabbage, radish, collard greens (Fig. 2) and mustard.

Read More

Efficacy of entomopathogenic nematodes against cigarette beetles by Ganpati Jagdale

Entomopathogenic nematodes and cigarette beetles

Cigarette beetle, Lasioderma serricorne is an economically important pest of stored tobacco but it can also cause damage to different cereal grains, oilseeds, flour and different kinds of dry fruits.  A laboratory study showed that the entomopathogenic nematodes including Heterorhabditis bacteriophora, Heterorhabditis megidis, Steinernema carpocapsae and Steinernema feltiae have a potential to use as biological agents against cigarette beetles, L. serricorne (Rumbos and Athanassiou, 2012).

A novel entomopathogenic nematode formulation to attract insect pests by Ganpati Jagdale

Western corn rootworm, Diabrotica virgifera virgifera and entomopathogenic nematodes

In this formulation, entomopathogenic nematodes were encapsulated in the capsules, which were prepared from several compounds including a polysaccharide extracted from the algae, Laminaria spp. According to Hiltpold et al., (2012), these entomopathogic nematode-filled capsules are easy to apply in the field and from these capsules entomopathogenic nematodes can easily break through, and successfully infect insect pests such as Western corn rootworm, Diabrotica virgifera virgifera. Also, these nematode-filled capsules can attract insect pests in the field if they are coated with insect food stimulant or attractants.

Literatures:

Hiltpold, I., Hibbard, B.E., French, B.W. and Turlings, T.C.J. 2012. Capsules containing entomopathogenic nematodes as a Trojan horse approach to control the western corn rootworm. Plant and Soil 358: 10-24.

New entomopathogenic nematode Steinernema australe from an island Isla Magdalena by Ganpati Jagdale

New entomopathogenic nematode and its symbiotic bacteria

Based on both the morphological and molecular characteristics, an entomopathogenic Steinernematid nematode isolated from a soil sample collected from Chilean island, Isla Magdalena has been identified as a new species, Steinernema australe (Edgington et al., 2009). This nematode is also symbiotically associated with symbiotic bacteria called Xenorhabdus magdalenensis, which was identified using 16S rRNA gene sequence similarities and a multigene approach (Tailliez et al., 2012).

Literature

Edgington, S., Buddie, A.G., Tymo, L., Hunt, D.J., Nguyen, K.B., France, A.I., Merino, L.M. and Moore, D. 2009. Steinernema australe n. sp. (Panagrolaimomorpha: Steinernematidae), a new entomopathogenic nematode from Isla Magdalena, Chile. Nematology 11: 699-717.

Tailliez, P., Pages, S., Edgington, S., Tymo, L.M. and Buddie, A.G. 2012. Description of Xenorhabdus magdalenensis sp nov., the symbiotic bacterium associated with Steinernema australe. International Journal of Systematic and Evolutionary Microbiology 62: 1761-1765.